Gene Deletion of the Kinin Receptor B1 Attenuates Cardiac Inflammation and Fibrosis During the Development of Experimental Diabetic Cardiomyopathy

نویسندگان

  • Dirk Westermann
  • Thomas Walther
  • Konstantinos Savvatis
  • Felcicitas Escher
  • Meike Sobirey
  • Alexander Riad
  • Michael Bader
  • Heinz-Peter Schultheiss
  • Carsten Tschöpe
چکیده

OBJECTIVE Diabetic cardiomyopathy is associated with increased mortality in patients with diabetes. The underlying pathology of this disease is still under discussion. We studied the role of the kinin B1 receptor on the development of experimental diabetic cardiomyopathy. RESEARCH DESIGN AND METHODS We utilized B1 receptor knockout mice and investigated cardiac inflammation, fibrosis, and oxidative stress after induction of streptozotocin (STZ)-induced diabetes. Furthermore, the left ventricular function was measured by pressure-volume loops after 8 weeks of diabetes. RESULTS B1 receptor knockout mice showed an attenuation of diabetic cardiomyopathy with improved systolic and diastolic function in comparison with diabetic control mice. This was associated with a decreased activation state of the mitogen-activated protein kinase p38, less oxidative stress, as well as normalized cardiac inflammation, shown by fewer invading cells and no increase in matrix metalloproteinase-9 as well as the chemokine CXCL-5. Furthermore, the profibrotic connective tissue growth factor was normalized, leading to a reduction in cardiac fibrosis despite severe hyperglycemia in mice lacking the B1 receptor. CONCLUSIONS These findings suggest that the B1 receptor is detrimental in diabetic cardiomyopathy in that it mediates inflammatory and fibrotic processes. These insights might have useful implications on future studies utilizing B1 receptor antagonists for treatment of human diabetic cardiomyopathy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cannabinoid 1 Receptor Promotes Cardiac Dysfunction, Oxidative Stress, Inflammation, and Fibrosis in Diabetic Cardiomyopathy

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors ...

متن کامل

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy.

Diabetes affects cardiac structure and function, and it has been suggested that diabetes leads to cardiomyopathy. Arachidonate 12/15-lipoxygenase (LOX) has been suggested to play an important role in atherogenesis and heart failure. However, the role of 12/15-LOX in diabetic cardiomyopathy has not been examined. In this study, we investigated the effects of cardiac 12/15-LOX on diabetic cardiom...

متن کامل

Assessment of cardiac inflammation and remodeling during the development of streptozotocin-induced diabetic cardiomyopathy in vivo: a time course analysis.

In this study, we examined cardiac inflammation, fibrosis and left ventricular (LV) function during the development of streptozotocin (STZ)-induced diabetic cardiomyopathy using an animal model of diabetes mellitus (DM). Diabetes was induced in 22 Sprague‑Dawley rats by an intraperitoneal single injection of STZ (70 mg/kg). Non-diabetic animals served as the controls (n=6). LV function was docu...

متن کامل

Cardiac hypertrophy and microvascular deficit in kinin B2 receptor knockout mice.

Experimental and clinical evidence suggests kinin involvement in adaptive myocardial growth. Kinins are growth-inhibitory to cardiomyocytes. Knockout of kinin B2 receptor (B2R) signaling causes dilated and failing cardiomyopathy in 129/J mice, and a 9-bp deletion polymorphism of human B2R is associated with reduced receptor expression and exaggerated left ventricular growth response to physical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009